11731 measured reflections

 $R_{\rm int} = 0.087$

3145 independent reflections

1754 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridobis(di-tert-butylmethylphosphine oxide- κO)diphenyltin(IV)

Manuela Müller, Hans-Wolfram Lerner and Michael Bolte*

Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 8 May 2008; accepted 8 May 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.012 Å; R factor = 0.058; wR factor = 0.099; data-to-parameter ratio = 18.6.

The complete molecule of the title compound, $[Sn(C_6H_5)_2Cl_2]$ - $(C_9H_{21}OP)_2$], is generated by crystallographic inversion symmetry, the Sn atom is located on a special position of site symmetry $\overline{1}$. The Sn atom adopts an all-*trans* SnC₂O₂Cl₂ octahedral geometry. As a consequence of the bulky substituents at the O atom, the P-O-Sn bond angle is 163.9 (3)°.

Related literature

For related literature, see: Lerner et al. (2005); Ruth et al. (2005, 2007).

Experimental

Crystal data

$[Sn(C_6H_5)_2Cl_2(C_9H_{21}OP)_2]$	V = 1682.0 (4) Å ³
$M_r = 696.25$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.1782 (19) Å	$\mu = 1.04 \text{ mm}^{-1}$
b = 9.0866 (8) Å	T = 173 (2) K
c = 16.339 (2) Å	$0.13 \times 0.09 \times 0.07 \text{ mm}$
$\beta = 111.518 \ (11)^{\circ}$	

Data collection

Stoe IPDSII two-circle diffractometer Absorption correction: multi-scan (*MULABS*; Spek, 2003; Blessing, 1995) $T_{\min} = 0.877, T_{\max} = 0.931$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	169 parameters
$vR(F^2) = 0.098$	H-atom parameters constrained
S = 0.88	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
145 reflections	$\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Table 1

Sn1-C41	2.128 (7)	Sn1-Cl1	2.5567 (16)
Sn1-O1	2.232 (4)		

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2731).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Lerner, H.-W., Haghiri Ilkechi, A., Bolte, M. & Wagner, M. (2005). Z. Naturforsch. Teil B, 60, 413-415.
- Ruth, K., Lerner, H.-W. & Bolte, M. (2005). Acta Cryst. E61, m1852-m1853. Ruth, K., Müller, M., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W.
- (2007). Z. Anorg. Allg. Chem. 633, 1485-1489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2008). E64, m803 [doi:10.1107/S1600536808013809]

Dichloridobis(di-tert-butylmethylphosphine oxide-KO)diphenyltin(IV)

M. Müller, H.-W. Lerner and M. Bolte

Comment

We are interested in Lewis-acidic Sn(IV) compounds and their reactivity towards Lewis bases. Recently we have reported the synthesis and structure of $\{Zn[Sn(CH_2SMe)_4]0.5Cl_2\}_n$ and $Sn(CH_2PPh_2)_4$ (Ruth *et al.*, 2007). In contrast to $[SnCl_4].[CH_3SCH_3]_2$ which forms an adduct in solid state with a six-coordinated Sn atom (Ruth *et al.*, 2005), the Sn(IV) centers in $\{Zn[Sn(CH_2SMe)_4]0.5Cl_2\}_n$ and $Sn(CH_2PPh_2)_4$ are tetra-coordinated. However, Me_3SnCl forms an adduct with Me_3SnOH and H_2O in which the Sn atoms possess the coordination number five. It is interesting to note that this adduct represents an intermediate in Me_3SnCl hydrolysis (Lerner *et al.*, 2005). We report here the X-ray crystal structure analysis of the title adduct [Ph_2SnCl_2].[*t*Bu_2MePO]_2, (I). The synthesis of (I) was achieved by treatment of Ph_2SnCl_2 with two equivalents of *t*Bu_2MePO as indicated in the equation below.

Compound (I) has crystallographic inversion symmetry with just half a molecule in the asymmetric unit. The Sn atom is hexacoordinated by three pairs of different ligands in an octahedral fashion (Table 1). All ligand pairs of the same kind are mutually *trans* at the Sn atom (Fig. 1). As a consequence of the bulky substituents at the O atom the P—O—Sn angle is enlarged to 163.9 (3)°.

Experimental

 tBu_2MePO (2.05 mmol) was added with stirring at ambient temperature to a solution of Ph₂SnCl₂ (0.58 mmol) in 25 ml THF. Colourless blocks of (I) were grown by storing this solution at room temperature for several weeks.

Refinement

The H atoms were geometrically positioned (C—H = 0.95-0.98Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or 1.5 $U_{eq}(methyl C)$.

Figures

Fig. 1. Perspective view of (I) with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry operator for generating equivalent atoms: (A) 1 - x, 1 - y, 1 - z.

Dichloridobis(di-tert-butylmethylphosphine oxide-κO)diphenyltin(IV)

F(000) = 724

 $\theta = 3.5 - 25.4^{\circ}$

 $\mu = 1.04 \text{ mm}^{-1}$ T = 173 K

Block, colourless $0.13 \times 0.09 \times 0.07 \text{ mm}$

 $D_{\rm x} = 1.375 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4261 reflections

Crystal data

 $[Sn(C_6H_5)_2Cl_2(C_9H_{21}OP)_2]$ $M_r = 696.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.1782 (19) Å b = 9.0866 (8) Å c = 16.339 (2) Å $\beta = 111.518$ (11)° V = 1682.0 (4) Å³ Z = 2

Data collection

Stoe IPDSII two-circle diffractometer	3145 independent reflections
Radiation source: fine-focus sealed tube	1754 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.087$
ω scans	$\theta_{\text{max}} = 25.6^{\circ}, \ \theta_{\text{min}} = 3.4^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -14 \rightarrow 14$
$T_{\min} = 0.877, \ T_{\max} = 0.931$	$k = -10 \rightarrow 11$
11731 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.098$	H-atom parameters constrained
<i>S</i> = 0.88	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0102P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3145 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
169 parameters	$\Delta \rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.83 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.5000	0.5000	0.5000	0.02649 (18)
Cl1	0.46725 (18)	0.3097 (2)	0.60405 (11)	0.0361 (5)
P1	0.31774 (17)	0.7748 (2)	0.56073 (11)	0.0271 (4)
01	0.3737 (4)	0.6468 (5)	0.5312 (3)	0.0300 (11)
C1	0.2236 (7)	0.7021 (8)	0.6188 (4)	0.0340 (17)
C2	0.2381 (6)	0.8878 (8)	0.4633 (4)	0.0337 (17)
C3	0.4234 (7)	0.8947 (8)	0.6369 (4)	0.0360 (18)
H3A	0.4684	0.8398	0.6903	0.054*
H3B	0.3822	0.9768	0.6521	0.054*
H3C	0.4774	0.9331	0.6100	0.054*
C11	0.3017 (7)	0.5921 (9)	0.6885 (5)	0.043 (2)
H11A	0.3721	0.6430	0.7282	0.064*
H11B	0.3257	0.5114	0.6589	0.064*
H11C	0.2568	0.5523	0.7225	0.064*
C12	0.1142 (8)	0.6241 (10)	0.5567 (5)	0.058 (3)
H12A	0.0656	0.6940	0.5126	0.086*
H12B	0.0686	0.5850	0.5903	0.086*
H12C	0.1380	0.5431	0.5273	0.086*
C13	0.1867 (8)	0.8238 (9)	0.6696 (5)	0.045 (2)
H13A	0.2574	0.8731	0.7101	0.068*
H13B	0.1428	0.7798	0.7031	0.068*
H13C	0.1366	0.8958	0.6279	0.068*
C21	0.1735 (8)	0.7857 (10)	0.3860 (5)	0.054 (2)
H21A	0.1137	0.7289	0.3994	0.081*
H21B	0.2303	0.7182	0.3762	0.081*
H21C	0.1351	0.8446	0.3329	0.081*
C22	0.3310 (6)	0.9731 (9)	0.4389 (4)	0.036 (2)
H22A	0.3744	1.0397	0.4871	0.054*
H22B	0.2916	1.0304	0.3853	0.054*
H22C	0.3862	0.9035	0.4288	0.054*
C23	0.1515 (7)	0.9993 (15)	0.4782 (5)	0.064 (3)
H23A	0.0918	0.9463	0.4938	0.096*
H23B	0.1128	1.0558	0.4242	0.096*
H23C	0.1950	1.0664	0.5261	0.096*
C41	0.3564 (7)	0.4098 (7)	0.3934 (4)	0.0276 (16)
C42	0.2454 (7)	0.3792 (8)	0.3993 (5)	0.0368 (18)
H42	0.2346	0.3983	0.4530	0.044*
C43	0.1523 (8)	0.3224 (9)	0.3291 (5)	0.049 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H43	0.0771	0.3099	0.3334	0.059*
C44	0.1696 (8)	0.2832 (9)	0.2512 (5)	0.046 (2)
H44	0.1076	0.2388	0.2039	0.055*
C45	0.2763 (8)	0.3097 (9)	0.2440 (4)	0.042 (2)
H45	0.2876	0.2845	0.1912	0.051*
C46	0.3695 (7)	0.3738 (8)	0.3140 (4)	0.0347 (18)
H46	0.4424	0.3930	0.3074	0.042*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0255 (4)	0.0305 (4)	0.0254 (3)	0.0007 (6)	0.0116 (3)	-0.0013 (5)
Cl1	0.0442 (12)	0.0352 (11)	0.0335 (9)	-0.0015 (10)	0.0198 (9)	0.0010 (8)
P1	0.0226 (11)	0.0324 (11)	0.0262 (8)	0.0000 (9)	0.0086 (8)	-0.0023 (8)
01	0.031 (3)	0.029 (3)	0.033 (2)	0.006 (2)	0.015 (2)	-0.002 (2)
C1	0.032 (5)	0.037 (4)	0.036 (4)	-0.005 (4)	0.017 (3)	-0.010 (3)
C2	0.024 (4)	0.045 (5)	0.034 (4)	0.001 (4)	0.013 (3)	-0.003 (3)
C3	0.032 (5)	0.052 (5)	0.025 (3)	-0.003 (4)	0.012 (3)	0.000 (3)
C11	0.051 (6)	0.039 (5)	0.046 (4)	-0.005 (4)	0.027 (4)	0.004 (4)
C12	0.055 (6)	0.072 (7)	0.058 (5)	-0.030 (5)	0.034 (5)	-0.027 (5)
C13	0.048 (6)	0.052 (5)	0.046 (4)	-0.006 (5)	0.029 (4)	-0.003 (4)
C21	0.038 (5)	0.078 (7)	0.036 (4)	0.003 (5)	0.002 (4)	0.001 (4)
C22	0.034 (4)	0.040 (6)	0.039 (3)	0.015 (4)	0.018 (3)	0.009 (4)
C23	0.057 (6)	0.087 (6)	0.059 (4)	0.056 (8)	0.033 (4)	0.026 (7)
C41	0.036 (5)	0.021 (4)	0.021 (3)	0.000 (3)	0.004 (3)	-0.004 (3)
C42	0.024 (4)	0.047 (5)	0.043 (4)	-0.009 (4)	0.017 (4)	-0.013 (4)
C43	0.033 (5)	0.052 (6)	0.066 (5)	0.000 (5)	0.022 (4)	0.000 (4)
C44	0.036 (5)	0.041 (5)	0.048 (4)	-0.002 (4)	0.003 (4)	-0.006 (4)
C45	0.043 (5)	0.047 (5)	0.029 (4)	-0.004 (4)	0.004 (4)	0.001 (3)
C46	0.036 (5)	0.032 (5)	0.035 (4)	0.007 (4)	0.012 (4)	0.008 (3)

Geometric parameters (Å, °)

Sn1—C41 ⁱ	2.128 (7)	C12—H12C	0.9800
Sn1—C41	2.128 (7)	C13—H13A	0.9800
Sn1—O1	2.232 (4)	С13—Н13В	0.9800
Sn1—O1 ⁱ	2.232 (4)	С13—Н13С	0.9800
Sn1—Cl1 ⁱ	2.5567 (16)	C21—H21A	0.9800
Sn1—Cl1	2.5567 (16)	C21—H21B	0.9800
P1—O1	1.513 (4)	C21—H21C	0.9800
P1—C3	1.794 (7)	C22—H22A	0.9800
P1—C2	1.842 (7)	C22—H22B	0.9800
P1	1.858 (7)	С22—Н22С	0.9800
C1—C12	1.522 (10)	С23—Н23А	0.9800
C1—C11	1.552 (10)	С23—Н23В	0.9800
C1—C13	1.545 (9)	C23—H23C	0.9800
C2—C22	1.541 (10)	C41—C46	1.402 (8)
C2—C21	1.533 (11)	C41—C42	1.418 (10)

C2—C23	1.544 (11)	C42—C43	1.383 (10)
С3—НЗА	0.9800	С42—Н42	0.9500
С3—Н3В	0.9800	C43—C44	1.412 (10)
С3—НЗС	0.9800	C43—H43	0.9500
C11—H11A	0.9800	C44—C45	1.367 (11)
C11—H11B	0.9800	C44—H44	0.9500
C11—H11C	0.9800	C45—C46	1.409 (10)
C12—H12A	0.9800	C45—H45	0.9500
C12—H12B	0.9800	C46—H46	0.9500
C41 ⁱ —Sn1—C41	180.0	C1—C12—H12B	109.5
C41 ⁱ —Sn1—O1	90.6 (2)	H12A—C12—H12B	109.5
C41—Sn1—O1	89.4 (2)	C1—C12—H12C	109.5
$C41^{i}$ —Sn1—O1 ⁱ	89.4 (2)	H12A—C12—H12C	109.5
C41—Sn1—O1 ⁱ	90.6 (2)	H12B—C12—H12C	109.5
O1—Sn1—O1 ⁱ	180.0	C1—C13—H13A	109.5
C41 ⁱ —Sn1—Cl1 ⁱ	90.10 (18)	C1—C13—H13B	109.5
C41—Sn1—Cl1 ⁱ	89.90 (18)	H13A—C13—H13B	109.5
O1—Sn1—Cl1 ⁱ	92.09 (12)	C1—C13—H13C	109.5
O1 ⁱ —Sn1—Cl1 ⁱ	87.91 (12)	H13A—C13—H13C	109.5
C41 ⁱ —Sn1—Cl1	89.90 (18)	H13B—C13—H13C	109.5
C41—Sn1—Cl1	90.10 (18)	C2—C21—H21A	109.5
O1—Sn1—Cl1	87.91 (12)	C2—C21—H21B	109.5
O1 ⁱ —Sn1—Cl1	92.09 (12)	H21A—C21—H21B	109.5
Cl1 ⁱ —Sn1—Cl1	180.0	C2—C21—H21C	109.5
O1—P1—C3	113.3 (3)	H21A—C21—H21C	109.5
O1—P1—C2	108.0 (3)	H21B—C21—H21C	109.5
C3—P1—C2	106.1 (3)	C2—C22—H22A	109.5
O1—P1—C1	108.9 (3)	C2—C22—H22B	109.5
C3—P1—C1	106.4 (3)	H22A—C22—H22B	109.5
C2—P1—C1	114.3 (3)	C2—C22—H22C	109.5
P1—O1—Sn1	163.9 (3)	H22A—C22—H22C	109.5
C12—C1—C11	109.9 (7)	H22B—C22—H22C	109.5
C12—C1—C13	109.6 (6)	C2—C23—H23A	109.5
C11—C1—C13	106.7 (6)	С2—С23—Н23В	109.5
C12—C1—P1	112.3 (4)	H23A—C23—H23B	109.5
C11—C1—P1	106.1 (5)	С2—С23—Н23С	109.5
C13—C1—P1	112.0 (5)	H23A—C23—H23C	109.5
C22—C2—C21	107.1 (6)	H23B—C23—H23C	109.5
C22—C2—C23	108.7 (7)	C46—C41—C42	116.8 (7)
C21—C2—C23	110.7 (7)	C46—C41—Sn1	120.6 (5)
C22—C2—P1	107.5 (5)	C42—C41—Sn1	122.6 (5)
C21—C2—P1	108.9 (5)	C43—C42—C41	122.0 (6)
C23—C2—P1	113.8 (4)	C43—C42—H42	119.0
Р1—С3—Н3А	109.5	C41—C42—H42	119.0
P1—C3—H3B	109.5	C42—C43—C44	119.6 (7)
НЗА—СЗ—НЗВ	109.5	C42—C43—H43	120.2

supplementary materials

Р1—С3—НЗС	109.5	C44—C43—H43	120.2
НЗА—СЗ—НЗС	109.5	C45—C44—C43	119.6 (8)
НЗВ—СЗ—НЗС	109.5	C45—C44—H44	120.2
C1—C11—H11A	109.5	C43—C44—H44	120.2
C1—C11—H11B	109.5	C44—C45—C46	120.7 (7)
H11A—C11—H11B	109.5	C44—C45—H45	119.6
C1—C11—H11C	109.5	C46—C45—H45	119.6
H11A—C11—H11C	109.5	C41—C46—C45	121.1 (7)
H11B—C11—H11C	109.5	C41—C46—H46	119.4
C1—C12—H12A	109.5	C45—C46—H46	119.4
C3—P1—O1—Sn1	-21.3 (11)	C1—P1—C2—C21	-79.8 (6)
C2—P1—O1—Sn1	95.9 (10)	O1—P1—C2—C23	165.5 (7)
C1—P1—O1—Sn1	-139.5 (9)	C3—P1—C2—C23	-72.7 (7)
C41 ⁱ —Sn1—O1—P1	31.6 (10)	C1—P1—C2—C23	44.2 (8)
C41—Sn1—O1—P1	-148.4 (10)	O1—Sn1—C41—C46	142.0 (5)
Cl1 ⁱ —Sn1—O1—P1	-58.5 (10)	O1 ⁱ —Sn1—C41—C46	-38.0 (5)
Cl1—Sn1—O1—P1	121.5 (10)	Cl1 ⁱ —Sn1—C41—C46	49.9 (5)
O1—P1—C1—C12	-69.5 (6)	Cl1—Sn1—C41—C46	-130.1 (5)
C3—P1—C1—C12	168.1 (6)	O1—Sn1—C41—C42	-39.9 (6)
C2—P1—C1—C12	51.4 (7)	O1 ⁱ —Sn1—C41—C42	140.1 (6)
O1—P1—C1—C11	50.5 (5)	Cl1 ⁱ —Sn1—C41—C42	-132.0 (6)
C3—P1—C1—C11	-71.9 (5)	Cl1—Sn1—C41—C42	48.0 (6)
C2—P1—C1—C11	171.4 (5)	C46—C41—C42—C43	-2.7 (11)
O1—P1—C1—C13	166.6 (5)	Sn1—C41—C42—C43	179.1 (6)
C3—P1—C1—C13	44.2 (6)	C41—C42—C43—C44	4.7 (12)
C2—P1—C1—C13	-72.5 (6)	C42—C43—C44—C45	-3.8 (12)
O1—P1—C2—C22	-74.1 (5)	C43—C44—C45—C46	0.8 (12)
C3—P1—C2—C22	47.7 (5)	C42—C41—C46—C45	-0.3 (10)
C1—P1—C2—C22	164.5 (5)	Sn1—C41—C46—C45	178.0 (6)
O1—P1—C2—C21	41.6 (6)	C44—C45—C46—C41	1.2 (12)
C3—P1—C2—C21	163.4 (5)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1